GEOMETRY OF COMPLEX MANIFOLDS SIMILAR TO THE CALABI-ECKMANN MANIFOLDS

DAVID E. BLAIR, GERALD D. LUDDEN & KENTARO YANO

In [4] Calabi and Eckmann showed that the product of two odd-dimensional spheres $S^{2p+1} \times S^{2q+1}$ $(p,q \ge 1)$ is a complex manifold. As $S^{2p+1} \times S^{2q+1}$ is not Kaehlerian, the fundamental 2-form Ω of the Hermitian structure is not closed. However, $d\Omega$ does have a special form on $S^{2p+1} \times S^{2q+1}$; in fact, $S^{2p+1} \times S^{2q+1}$ admits two nonvanishing vector fields which are both Killing and analytic, and whose covariant forms determine Ω . Our purpose here is to study complex manifolds whose complex structures are similar to the complex structure on $S^{2p+1} \times S^{2q+1}$.

In § 1 we review the geometry of the Calabi-Eckmann manifolds. In § 2 we give some elementary properties of vector fields on a Hermitian manifold, and introduce the notion of a holomorphic pair of automorphisms and of a bicontact manifold. § 3 continues the author's paper [2] on the differential geometry of principal toroidal bundles for the present case. In § 4 we discuss bicontact manifolds and, in particular, the integrable distributions of a bicontact structure on a Hermitian manifold. Finally in § 5 we give some results on the curvatures of a Hermitian manifold admitting a holomorphic pair of automorphisms.

1. The Hermitian structure on the Calabi-Eckmann manifolds

The construction of the complex structure on $S^{2p+1} \times S^{2q+1}$ which we will give is due to Morimoto [6]. It is well known that an odd-dimensional sphere S^{2p+1} carries a contact structure, i.e., a nonvanishing 1-form η such that $\eta \wedge (d\eta)^p \neq 0$. Let G be the standard metric on S^{2p+1} . Then there exist on S^{2p+1} (see e.g. [8]) a contact form η , a vector field ξ , and a tensor field φ of type (1,1) such that

$$\eta(\xi) = 1, \quad \varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad \varphi^2 = -I + \eta \otimes \xi,
G(\xi, X) = \eta(X), \quad G(\varphi X, \varphi Y) = G(X, Y) - \eta(X)\eta(Y),$$

i.e., S^{2p+1} carries an almost contact metric structure. For a contact structure $\eta \wedge (d\eta)^p \neq 0$, φ , ξ and G may be chosen such that $d\eta(X,Y) = G(\varphi X,Y)$,

Communicated November 10, 1972.

as happens in the sphere example. Moreover, the contact metric structure on S^{2p+1} is normal, i.e.,

$$[\varphi,\varphi]+d\eta\otimes\xi=0$$
,

where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ . Thus S^{2p+1} carries a normal contact metric or Sasakian structure.

Now let (φ, ξ, η, G) and $(\bar{\varphi}, \bar{\xi}, \bar{\eta}, \bar{G})$ be Sasakian structures on S^{2p+1} and S^{2q+1} respectively. Then define an almost complex structure J on $S^{2p+1} \times S^{2q+1}$ by

$$J(X, \overline{X}) = (\varphi X - \overline{\eta}(\overline{X})\xi, \overline{\varphi}\overline{X} + \eta(X)\overline{\xi}) ,$$

and let g be the product metric. Then direct computations show [6] that $J^2 = -I$, $g(J(X, \overline{X}), J(Y, \overline{Y})) = g((X, \overline{X}), (Y, \overline{Y}))$ and, using normality, that [J, J] = 0. Thus $S^{2p+1} \times S^{2q+1}$ is a Hermitian manifold.

Defining the fundamental 2-form Ω of the Hermitian structure by

$$\Omega((X, \overline{X}), (Y, \overline{Y})) = g(J(X, \overline{X}), (Y, \overline{Y}))$$

we find that

$$\Omega = d\eta + d\bar{\eta} + \eta \wedge \bar{\eta}$$
,

where we view η and $\bar{\eta}$ as 1-forms extended to the product. Thus the fundamental 2-form Ω of the Hermitian structure on $S^{2p+1} \times S^{2q+1}$ satisfies

$$d\Omega = d\eta \wedge \overline{\eta} - \eta \wedge d\overline{\eta} \ .$$

Finally we remark that from the Hopf fibration $\pi'\colon S^{2p+1}\to PC^p$ of an odd-dimensional sphere as a principal circle bundle over complex projective space, we obtain a natural fibration $\pi\colon S^{2p+1}\times S^{2q+1}\to PC^p\times PC^q$ of a Calabi-Eckmann manifold as a principal T^2 (2-dimensional torus) bundle over a product of complex projective spaces. In fact the complex coordinates of $S^{2p+1}\times S^{2q+1}$ are essentially those of $PC^p\times PC^q$ together with a fibre coordinate [4], [5].

2. Some elementary properties of vector fields on a Hermitian manifold

Let M^{2n} be a Hermitian manifold with complex structure J and Hermitian metric g. Let U be an analytic vector field on M^{2n} , i.e., $\mathfrak{L}_U J = 0$ where \mathfrak{L} denotes Lie differentiation.

¹ More generally on an almost complex manifold a vector field U is said to be almost analytic if $\mathfrak{L}_U J = 0$ and [J, J](U, X) = 0 for all vector fields X.

Proposition 2.1. If U is an analytic vector field on M^{2n} , then so is V = JU. Proof.

$$0 = [J, J](U, X) = -[U, X] + [V, JX] - J[V, X] - J[U, JX]$$

= $-J(\mathfrak{D}_{U}J)X + (\mathfrak{D}_{V}J)X = (\mathfrak{D}_{V}J)X$.

Thus, if U is an infinitesimal automorphism of J, so is JU; but if U is Killing (an automorphism of g), JU is not in general Killing. We therefore make the following definition.

Definition. By a holomorphic pair of automorphisms we mean a unit vector field U such that U and V = JU are infinitesimal automorphisms of the Hermitian structure.

Let u and v denote the covariant forms of U and V respectively. We begin with some elementary properties of a holomorphic pair of automorphisms (U, V = JU).

Lemma 2.2. [U, V] = 0.

Proof. $0 = (\mathfrak{D}_U J)U = [U, JU] - J[U, U] = [U, V].$

Lemma 2.3. du(U, X) = 0, du(V, X) = 0, dv(U, X) = 0, dv(V, X) = 0. *Proof.* We give the proof for du, the proof for dv being similar. Since U

is Killing and unit, we have

$$du(U,X) = (\overline{V}_U u)(X) - (\overline{V}_X u)(U) = g(\overline{V}_U U, X) - g(\overline{V}_X U, U)$$

= :-2g(\overline{V}_X U, U) = 0,

where \overline{V} denotes the Riemannian connection of g. Similarly since [U, V] = 0 and V is also Killing, we have

$$du(V,X) = g(\overline{V}_V U,X) - g(\overline{V}_X U,V) = g(\overline{V}_U V,X) + g(\overline{V}_X V,U) = 0.$$

Proposition 2.4. At each point of M^{2n} , u and v have odd rank, i.e., there exist nonnegative integers p and q such that $u \wedge (du)^p \neq 0$, $v \wedge (dv)^q \neq 0$, $(du)^{p+1} = 0$, $(dv)^{q+1} = 0$.

Proof. First note that $(du)^n = 0$; for evaluating $(du)^n$ on a *J*-basis containing U and V each term in

$$(du)^n(U, V, X_3, \cdots, X_{2n})$$

vanishes by Lemma 2.3; here we have set $X_1 = U$, $X_2 = JU = V$ and $\{X_i\}$ a *J*-basis. Suppose now that at $m \in M^{2n}$, $(du)^p \neq 0$ and $(du)^{p+1} = 0$. Then evaluating $(u \wedge (du)^p)(U, Y_1, \dots, Y_{2p})$ where Y_1, \dots, Y_{2p} are vector fields such that $du(Y_i, Y_j) \neq 0$, we have that $u \wedge (du)^p \neq 0$. Similarly v has rank 2q + 1.

Definition. We say that a differentiable manifold M^{2n} is bicontact if it admits 1-forms u and v such that $u \wedge v \wedge (du)^p \wedge (dv)^q \neq 0$, $(du)^{p+1} = 0$

and $(dv)^{q+1} = 0$ with p + q + 1 = n. M^{2n} is called a Hermitian bicontact manifold if M^{2n} is both Hermitian and bicontact, and the 1-forms u and v are the covariant forms of a holomorphic pair of automorphisms.

Lemma 2.5. If du is of bidegree (1,1) with respect to the complex structure J, then so is dv.

Proof. Recall that the Nijenhuis torsion of a vector-valued 1-form h is given by its action on a 1-form θ . This action is

$$[h,h]\theta = -h^{(2)}d\theta + h^{(1)}d(\theta \circ h) - d(\theta \circ h^2),$$

where for a 2-form Θ ,

$$(h^{(1)}\Theta)(X,Y) = \Theta(hX,Y) + \Theta(X,hY) , \qquad (h^{(2)}\Theta)(X,Y) = \Theta(hX,hY) .$$

 $h^{(1)}\Theta$ is often denoted by $\Theta \wedge h$. Now since $v = -u \circ J$ and du is of bidegree (1,1), we have

$$0 = ([J, J]u)(X, Y)$$

= $-du(JX, JY) - dv(JX, Y) - dv(X, JY) + du(X, Y)$
= $-dv(JX, Y) - dv(X, JY)$,

and hence dv is of bidegree (1, 1).

Remark. The above proof also shows that if du = dv, then [J, J] = 0 implies that du(=dv) is of bidegree (1, 1). The authors have studied certain manifolds admitting independent 1-forms u and v with du = dv, [1], [2].

Proposition 2.6. If M^{2n} is Kaehlerian, then du = dv = 0.

Proof. First since V is analytic, we have

$$0 = (\mathfrak{Q}_{V}J)X = \mathcal{V}_{V}JX - \mathcal{V}_{JX}V - J\mathcal{V}_{V}X + J\mathcal{V}_{X}V = -\mathcal{V}_{JX}V + J\mathcal{V}_{X}V.$$

Now since V is Killing,

$$du(X,Y) = g(\nabla_X U, Y) - g(\nabla_Y U, X) = g(-\nabla_X JV, Y) - g(-\nabla_Y JV, X)$$

= $g(\nabla_X V, JY) + g(J\nabla_Y V, X) = -g(\nabla_J V, X) + g(J\nabla_Y V, X) = 0$.

Similarly one can show that dv = 0.

In [9] one of the authors introduced the notion of an f-structure on a differentiable manifold, i.e., the manifold admits a tensor field $f \neq 0$ of type (1, 1) satisfying $f^3 + f = 0$ (see also [1], [7]).

Proposition 2.7. Let (M^{2n}, J, g) be an almost Hermitian manifold admitting a nonvanishing vector field U, then U, V = JU, u, v (the covariant forms of U and V) and $f = J + v \otimes U - u \otimes V$ define an f-structure with complemented frames and rank (f) = 2n - 2 on M^{2n} , i.e., we have

$$f^2 = -I + u \otimes U + v \otimes V$$
, $fU = fV = 0$, $u \circ f = v \circ f = 0$, $u(U) = v(V) = 1$, $u(V) = v(U) = 0$.

The proof of this proposition is a straightforward computation and will be omitted.

An f-structure with complemented frames (f, U, V, u, v) is said to be normal if the tensor S defined by

$$S(X, Y) = [f, f](X, Y) + du(X, Y)U + dv(X, Y)V$$

vanishes. Computing S in our case gives

$$S(X,Y) = [J,J](X,Y) - (du \top J)(X,Y) - (dv \top J)(X,Y) + u(X)(\mathfrak{D}_v J)Y - u(Y)(\mathfrak{D}_v J)X + v(X)(\mathfrak{D}_v J)Y - v(Y)(\mathfrak{D}_v J)X.$$

Thus we have the following result.

Proposition 2.8. On a Hermitian manifold with a nonvanishing analytic vector field U, if du is of bidegree (1, 1), then the f-structure (f, U, V, u, v) is normal

It is well known (see e.g. [7]) that for a normal f-structure with complemented frames, we have

$$\mathfrak{L}_{v}f = 0$$
, $\mathfrak{L}_{v}u = 0$, $\mathfrak{L}_{v}v = 0$, $\mathfrak{L}_{v}f = 0$, $\mathfrak{L}_{v}u = 0$, $\mathfrak{L}_{v}v = 0$, $du \wedge f = 0$, $dv \wedge f = 0$, $[U, V] = 0$.

Thus a straightforward computation shows that S = 0 implies [J, J] = 0. Now if g is the Hermitian metric on M^{2n} , then

$$g(fX, fY) = g(X, Y) - u(X)u(Y) - v(X)v(Y),$$

 $u(X) = g(U, X), v(X) = g(V, X),$

that is, (f, g, u, v) defines a metric f-structure with complemented frames. Finally we define the fundamental 2-forms Ω and F of the structures by

$$\Omega(X, Y) = g(JX, Y)$$
, $F(X, Y) = g(fX, Y)$.

Then a short computation gives

$$F = \Omega - u \wedge v .$$

3. Fibering by a holomorphic pair of automorphisms

In [2] the authors proved the following result.

Theorem. Let M^{2m+s} be a compact connected manifold with a regular normal f-structure of rank 2m. Then M^{2m+s} is the bundle space of a principal toroidal bundle over a complex manifold N^{2m} .

Now if a complex manifold M^{2n} admits a regular analytic vector field U (i.e., every point $m \in M^{2n}$ has a neighborhood such that the integral curve of U through m passes through the neighborhood only once), the vector field V = JU is not necessarily regular. Thus we say that a holomorphic pair of automorphisms is regular if both U and V are regular vector fields. Then using the above theorem and Proposition 2.8 we can prove the following result.

Theorem 3.1. If a compact Hermitian manifold (M^{2n}, J, g) admits a regular holomorphic pair of automorphisms (U, V = JU) with du of bidegree (1, 1), then M^{2n} is a principal T^2 bundle over a Hermitian manifold N^{2n-2} .

Proof. From the above theorem and Proposition 2.8 we obtain the desired fibration. Thus we shall only exhibit the Hermitian structure on N^{2n-2} . As U and V are analytic, J is projectable and we define J' on N^{2n-2} by

$$J'X = \pi_* J \tilde{\pi} X ,$$

where $\tilde{\pi}$ denotes the horizontal lift with respect to the Riemannian connection of g (in the nonmetric case one can use the pair (u, v) as a Lie algebra valued connection form to determine $\tilde{\pi}$ [2]). Then it is easy to check that $J'^2 = -I$. Moreover we have

$$\begin{split} [J',J'](X,Y) &= -[\pi_*\tilde{\pi}X,\pi_*\tilde{\pi}Y] + [\pi_*J\tilde{\pi}X,\pi_*J\tilde{\pi}Y] \\ &- \pi_*J\tilde{\pi}[\pi_*J\tilde{\pi}X,\pi_*\tilde{\pi}Y] - \pi_*J\tilde{\pi}[\pi_*\tilde{\pi}X,\pi_*J\tilde{\pi}Y] \\ &= \pi_*[J,J](\tilde{\pi}X,\tilde{\pi}Y) = 0 \ . \end{split}$$

Finally as U and V are Killing, the metric g is projectable to a metric g' on N^{2n-2} given by $g'(X,Y)\circ\pi=g(\tilde{\pi}X,\tilde{\pi}Y)$. Then

$$g'(J'X,J'Y)\circ\pi=g(J\tilde{\pi}X,J\tilde{\pi}Y)=g(\tilde{\pi}X,\tilde{\pi}Y)=g'(X,Y)\circ\pi\ ,$$

and hence the structure on N^{2n-2} is Hermitian.

We now compute the fundamental 2-form F of the f-structure (f, U, V, u, v) on M^{2n} . First of all it is clear that F(U, X) = 0 and F(V, X) = 0. Thus it is enough to compute F on vector fields of the form $\tilde{\pi}X$, $\tilde{\pi}Y$ where X and Y are vector fields on N^{2n-2} .

$$F(\tilde{\pi}X, \tilde{\pi}Y) = g(f\tilde{\pi}X, \tilde{\pi}Y) = g(J\tilde{\pi}X, \tilde{\pi}Y) = g(\tilde{\pi}J'X, \tilde{\pi}Y)$$
$$= g'(J'X, Y) \circ \pi = \Omega'(X, Y) \circ \pi ,$$

where Ω' is the fundamental 2-form on N^{2n-2} . Hence we have $F=\pi^*\Omega'$. Now $dF=d\pi^*\Omega'=\pi^*d\Omega'$ and $dF=d\Omega-du\wedge v+u\wedge dv$, from which we get the following result.

Theorem 3.2. The base manifold (N^{2n-2}, J', g') of the above fibration is Kaehlerian if and only if

$$d\Omega = du \wedge v - u \wedge dv$$

on M^{2n} .

Note also that by Proposition 2.6, $d\Omega = 0$ implies du = dv = 0 and hence dF = 0. Thus we have the following result.

Proposition 3.3. If M^{2n} is Kaehlerian, then the base manifold N^{2n-2} is also Kaehlerian.

4. Hermitian bicontact manifolds

We begin with the following elementary result on the topology of a compact bicontact manifold.

Theorem 4.1. Let M^{2n} be a compact bicontact manifold, and let 2p + 1 and 2q + 1 denote the ranks of the bicontact forms u and v Then the betti numbers b_{2v+1} and b_{2q+1} are nonzero.

Proof. As (2p+1)+(2q+1)=2n it suffices to show that b_{2p+1} is nonzero. We shall show that $u \wedge (du)^p$ has nonzero harmonic part. Suppose $u \wedge (du)^p$ has no harmonic part, then as $(du)^{p+1}=0$, $u \wedge (du)^p$ is exact, say $d\alpha$. Now on a bicontact manifold $u \wedge (du)^p \wedge v \wedge (dv)^q$ is a volume element, hence, since $(dv)^{q+1}=0$, we have

$$0 \neq \int_{\mathcal{M}} u \wedge (du)^p \wedge v \wedge (dv)^q = \int_{\mathcal{M}} d\alpha \wedge v \wedge (dv)^q = \int_{\mathcal{M}} d(\alpha \wedge v \wedge (dv)^q) = 0,$$

a contradiction.

We shall now digress briefly to introduce the notion of a semi-invariant submanifold [3]. Let M^{2n} be an almost complex manifold with a vector field U and a 1-form u with u(U)=1, and set V=JU, $v=-u\circ J$. Let $\iota:\overline{M}\to M^{2n}$ be a submanifold of M^{2n} such that 1) the transform of a vector tangent to \overline{M} by J is in the space spanned by the tangent space of \overline{M} and the vector U, 2) V is tangent to \overline{M} , and 3) $u\circ \iota_*=0$; we then say that \overline{M} is semi-invariant with respect to U. Note that U is never tangent to \overline{M} , for if it were, then $U=\iota_*\overline{U}$, and $1=u(U)=u(\iota_*\overline{U})=0$, a contradiction.

Now define a tensor field φ of type (1, 1), a vector field ξ , and a 1-form η on \overline{M} by

$$J\iota_*X = \iota_*\varphi X - \eta(X)U$$
, $V = \iota_*\xi$.

We then have

$$-\iota_* X = \iota_* \varphi^{\imath} X - \eta(\varphi X) U - \eta(X) \iota_* \xi \ ,$$

from which it follows that

$$\varphi^{\scriptscriptstyle 2} = -I + \eta \otimes \xi \; , \qquad \eta \circ \varphi = 0 \; . \label{eq:phi2}$$

Also

$$-U = JV = J\iota_*\xi = \iota_*\varphi\xi - \eta(\xi)U ,$$

giving

$$\varphi \xi = 0$$
, $\eta(\xi) = 1$.

Thus we have the following result.

Proposition 4.2. A submanifold of M^{2n} , which is semi-invariant with respect to U, admits an almost contact structure.

Now computing $[J, J](\iota_*X, \iota_*Y)$ we have

$$[J, J](\iota_* X, \iota_* Y) = \iota_* [\varphi, \varphi](X, Y) + d\eta(X, Y) \iota_* \xi - \eta(X) (\mathfrak{D}_U J) \iota_* Y + \eta(Y) (\mathfrak{D}_U J) \iota_* X - ((\mathfrak{D}_{n, X} \eta)(Y) - (\mathfrak{D}_{n, Y} \eta)(X)) U,$$

from which we obtain the following result.

Proposition 4.3. If a submanifold is semi-invariant with respect to an analytic vector field U on a complex manifold M^{2n} , then its almost contact structure is normal.

Returning to the bicontact case, we assume for the remainder of this section that M^{2n} is a Hermitian bicontact manifold as defined in § 2. We define a distribution \mathcal{U} of dimension 2q + 1 by

$$\mathcal{U} = \{X \,|\, i(X)u = 0, i(X)du = 0\} \;,$$

where i denotes the interior product operator. We shall show that \mathcal{U} is integrable. Let X and Y be vector fields belonging to \mathcal{U} . Then

$$0 = du(X, Y) = Xu(Y) - Yu(X) - u([X, Y]) = -u([X, Y]).$$

Also for any Z

$$0=du(X,Z)=Xu(Z)-u([X,Z])=(\mathfrak{Q}_Xu)(Z)\;,$$

and therefore

$$du([X, Y], Z) = [X, Y]u(Z) - Zu([X, Y]) - u([[X, Y], Z])$$

= $(\mathfrak{Q}_{[X,Y]}u)(Z) = ((\mathfrak{Q}_{X}\mathfrak{Q}_{Y} - \mathfrak{Q}_{Y}\mathfrak{Q}_{X})u)(Z) = 0$.

Similarly the complementary distribution $\mathscr{V} = \{X \mid i(X)v = 0, i(X)dv = 0\}$ of dimension 2p + 1 is integrable.

Theorem 4.4. A Hermitian bicontact manifold M^{2n} with du of bidegree (1, 1) is locally the product of two normal contact manifolds M^{2p+1} and M^{2q+1} .

Proof. As noted above the distributions \mathscr{U} and \mathscr{V} are complementary and integrable. Thus M^{2n} is locally the product of the respective maximal integral

submanifolds M^{2q+1} and M^{2p+1} . We shall show that the integral submanifold M^{2q+1} of $\mathscr U$ is semi-invariant with respect to U. Let $\iota\colon M^{2q+1}\to M^{2n}$ denote the immersion, and let X be tangent to M^{2q+1} , i.e., $\iota_*X\in\mathscr U$. Set $Y=J\iota_*X+v(\iota_*X)U$. Then

$$u(Y) = u(J_{\ell_*}X) + v(\ell_*X) = -v(\ell_*X) + v(\ell_*X) = 0$$

and

$$du(Y,Z) = du(I_{\ell_*}X + v(\ell_*X)U,Z) = du(I_{\ell_*}X,Z) = -du(\ell_*X,JZ) = 0$$

since du is of bidegree (1,1). Thus $Y \in \mathcal{U}$ so that M^{2q+1} is semi-invariant with respect to U, and hence by Proposition 4.3 its almost contact structure is normal. Finally as

$$\eta(X) = -g(J_{\ell_*}X, U) = g(\ell_*X, V) = v(\ell_*X) ,$$

we have that $\eta \wedge (d\eta)^q \neq 0$ on M^{2q+1} . Similarly, M^{2p+1} is semi-invariant with respect to V, and is thus a normal contact manifold completing the proof.

Now let P and Q denote the projection maps to the tangent spaces of M^{2p+1} and M^{2q+1} respectively. We note for later use that $J(P-u\otimes U)=(P-u\otimes U)J$ as is easily verified, and hence that

$$JP = PJ + u \otimes V + v \otimes U$$
.

We now compute the Lie derivative of P with respect to U and V. First note that

$$(\mathfrak{Q}_{v}P)X = [U, PX] - P[U, X].$$

Thus, if X is U or V, we clearly have $(\mathfrak{Q}_U P)X = 0$. If X is orthogonal to U but also tangent to M^{2p+1} , then PX = X and [U, X] is again tangent to M^{2p+1} so that

$$(\mathfrak{Q}_{v}P)X = [U,X] - [U,X] = 0.$$

Finally, if X is orthogonal to V and tangent to M^{2q+1} , then PX = 0. Let Y be arbitrary. Then as U is Killing and P symmetric, we have

$$g((\mathfrak{Q}_{U}P)X, Y) = -g(P[U, X], Y) = -g(\mathcal{V}_{U}X, PY) + g(\mathcal{V}_{X}U, PY)$$

= $g(X, \mathcal{V}_{U}PY) - g(X, \mathcal{V}_{PY}U) = g(X, [U, PY]) = 0$.

Similarly $\mathfrak{D}_{\nu}P = 0$, and thus P and Q = I - P are projectable by the fibration of § 3.

On the base manifold N^{2n-2} of the fibration we define an almost product structure as follows.

$$P'X = \pi_* P \tilde{\pi} X$$
, $Q'X = \pi_* Q \tilde{\pi} X$.

Then a direct computation shows that

$$P'^2 = P'$$
, $Q'^2 = Q'$, $P'Q' = Q'P' = 0$, $P' + Q' = I$.

Moreover as both the distributions \mathcal{U} and \mathcal{V} are integrable, [P, P] = 0 so that

$$\begin{split} [P',P'](X,Y) &= \pi_* P^2 \bar{\pi}[\pi_* \tilde{\pi} X, \pi_* \tilde{\pi} Y] + [\pi_* P \tilde{\pi} X, \pi_* P \tilde{\pi} Y] \\ &- \pi_* P \tilde{\pi}[\pi_* P \tilde{\pi} X, \pi_* \tilde{\pi} Y] - \pi_* P \tilde{\pi}[\pi_* \tilde{\pi} X, \pi_* P \tilde{\pi} Y] \\ &= \pi_* [P,P](\tilde{\pi} X, \tilde{\pi} Y) = 0 \; . \end{split}$$

Thus the induced almost product structure on N^{2n-2} is integrable, and so N^{2n-2} is locally the product of two manifolds N^{2p} and N^{2q} .

We have already seen that J is projectable since U and V are analytic, and that $(J'=\pi_*J\tilde{\pi},g')$ is a Hermitian structure on N^{2n-2} . Now let $\ell':N^{2p}\to N^{2n-2}$ denote the immersion of N^{2p} in N^{2n-2} , and let X be a vector field on N^{2p} . Then using $JP=PJ+u\otimes V+v\otimes U$, we have

$$J'\ell_*X = \pi_*J\tilde{\pi}P'\ell_*X = \pi_*JP\tilde{\pi}\ell_*X = \pi_*PJ\tilde{\pi}\ell_*X$$
$$= \pi_*P\tilde{\pi}J'\ell_*X = P'J'\ell_*X,$$

and hence N^{2p} is an invariant submanifold of N^{2n-2} and consequently is a Hermitian submanifold of N^{2n-2} . Moreover, if N^{2n-2} is Kaehlerian, so is N^{2p} and similarly N^{2q} . Also, if each of the induced structures on N^{2p} and N^{2q} are Kaehlerian, so is the structure on N^{2n-2} . Thus using Theorems 3.1 and 4.4 and Proposition 3.2 we have

Theorem 4.5. Let M^{2n} be a regular Hermitian bicontact manifold with du of bidegree (1,1). Then the base manifold N^{2n-2} of the induced fibration is locally the product of two Hermitian manifolds. Moreover, N^{2n-2} is locally the product of two Kaehler manifolds if and only if the fundamental 2-form Ω on M^{2n} satisfies $d\Omega = du \wedge v - u \wedge dv$.

5. Curvature

In this section we give some results on the curvature of a Hermitian manifold admitting a holomorphic pair of automorphisms.

Proposition 5.1. Let (M^{2n}, J, g) be a Hermitian manifold admitting a holomorphic pair of automorphisms (U, V = JU). Then the sectional curvature of a section spanned by U and V vanishes.

Proof. Since U is Killing, from $g(\nabla_v U, X) - g(\nabla_x U, V) = 0$ which was derived in the proof of Lemma 2.3 it follows that $2g(\nabla_v U, X) = 0$ and hence that $\nabla_v U = 0$. Moreover as U is a unit vector field, we have $0 = g(\nabla_x U, U) = -g(\nabla_v U, X)$ giving $\nabla_v U = 0$. Thus $g(R_{UV}U, V) = 0$, where R is the

curvature tensor of g, and hence the sectional curvature of a section spanned by U and V vanishes.

Theorem 5.2. If the Hermitian manifold M^{2n} of Theorem 3.1 has non-negative sectional curvature, then the base manifold N^{2n-2} also has nonnegative curvature.

Proof. First we note some relations.

$$[\tilde{\pi}X, \tilde{\pi}Y] = \tilde{\pi}[X, Y] + u([\tilde{\pi}X, \tilde{\pi}Y])U + v([\tilde{\pi}X, \tilde{\pi}Y])V.$$

Since U and V are Killing, we have

$$\begin{split} g(\vec{V}_{\tilde{\pi}X}\tilde{\pi}Y,U) &= -g(\tilde{\pi}Y,\vec{V}_{\tilde{\pi}X}U) = -\frac{1}{2}du(\tilde{\pi}X,\tilde{\pi}Y) \;, \\ g(\vec{V}_{\tilde{\pi}X}\tilde{\pi}Y,V) &= -g(\tilde{\pi}Y,\vec{V}_{\tilde{\pi}X}V) = -\frac{1}{2}dv(\tilde{\pi}X,\tilde{\pi}Y) \;, \end{split}$$

and hence

$$\nabla_{\tilde{\pi}X}\tilde{\pi}Y = \tilde{\pi}\nabla'_XY - \frac{1}{9}du(\tilde{\pi}X, \tilde{\pi}Y)U - \frac{1}{9}dv(\tilde{\pi}X, \tilde{\pi}Y)V,$$

where ∇' is the Riemannian connection of g'. Also, since $[U, \tilde{\pi}X]$ is vertical, $g(\nabla_U \tilde{\pi}X, \tilde{\pi}Y) = g(\nabla_{\tilde{\pi}X}U + [U, \tilde{\pi}X], \tilde{\pi}Y) = \frac{1}{2}du(\tilde{\pi}X, \tilde{\pi}Y)$, and similarly $g(\nabla_V \tilde{\pi}X, \tilde{\pi}Y) = \frac{1}{2}dv(\tilde{\pi}X, \tilde{\pi}Y)$.

We now compute the curvature.

$$\begin{split} g(R_{\pi X\pi Y}\tilde{\pi}X,\tilde{\pi}Y) &= g(\mathcal{V}_{\pi X}\mathcal{V}_{\pi Y}\tilde{\pi}X - \mathcal{V}_{\pi Y}\mathcal{V}_{\pi X}\tilde{\pi}X - \mathcal{V}_{[\pi X,\pi Y]}\tilde{\pi}X,\tilde{\pi}Y) \\ &= g(\mathcal{V}_{\pi X}(\tilde{\pi}\mathcal{V}'_{Y}X - \frac{1}{2}du(\tilde{\pi}Y,\tilde{\pi}X)U - \frac{1}{2}dv(\tilde{\pi}Y,\tilde{\pi}X)V) \\ &- \mathcal{V}_{\pi Y}\tilde{\pi}\mathcal{V}'_{X}X - \mathcal{V}_{[\pi X,\pi Y]}\tilde{\pi}X,\tilde{\pi}Y) \\ &= g(\tilde{\pi}\mathcal{V}'_{X}\mathcal{V}'_{Y}X,\tilde{\pi}Y) - \frac{1}{2}du(\tilde{\pi}Y,\tilde{\pi}X)g(\mathcal{V}_{\pi X}U,\tilde{\pi}Y) \\ &- \frac{1}{2}dv(\tilde{\pi}Y,\tilde{\pi}X)g(\mathcal{V}_{\pi X}V,\tilde{\pi}Y) - g(\tilde{\pi}\mathcal{V}'_{Y}\mathcal{V}'_{X}X,\tilde{\pi}Y) \\ &- g(\tilde{\pi}\mathcal{V}'_{[X,Y]}X,\tilde{\pi}Y) - u([\tilde{\pi}X,\tilde{\pi}Y])g(\mathcal{V}_{U}\tilde{\pi}X,\tilde{\pi}Y) \\ &- v([\tilde{\pi}X,\tilde{\pi}Y])g(\mathcal{V}_{Y}\tilde{\pi}X,\tilde{\pi}Y) \\ &= g'(\mathcal{R}'_{XY}X,Y) \circ \pi + \frac{3}{4}du(\tilde{\pi}X,\tilde{\pi}Y)^{2} + \frac{3}{4}dv(\tilde{\pi}X,\tilde{\pi}Y)^{2} \end{split}$$

since $du(\bar{\pi}X, \bar{\pi}Y) = \bar{\pi}Xu(\bar{\pi}Y) - \bar{\pi}Yu(\bar{\pi}X) - u([\bar{\pi}X, \bar{\pi}Y]) = -u([\bar{\pi}X, \bar{\pi}Y])$. Now for the sectional curvature K we have

$$K(\tilde{\pi}X,\tilde{\pi}Y) = \frac{-g(R_{\tilde{\pi}X\tilde{\pi}Y}\tilde{\pi}X,\tilde{\pi}Y)}{g(\tilde{\pi}X,\tilde{\pi}X)g(\tilde{\pi}Y,\tilde{\pi}Y) - g(\tilde{\pi}X,\tilde{\pi}Y)^2} \; .$$

Thus, if $K \geq 0$, then $g(R_{\tilde{\pi}X\tilde{\pi}Y}\tilde{\pi}X, \tilde{\pi}Y) \leq 0$ and hence

$$-g'(R'_{XY}X,Y)\circ\pi\geq \frac{3}{4}(du(\tilde{\pi}X,\tilde{\pi}Y)^2+dv(\tilde{\pi}X,\tilde{\pi}Y)^2),$$

from which it follows that the sectional curvature $K'(X, Y) \geq 0$.

References

- [1] D. E. Blair, Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$, J. Differential Geometry 4 (1970) 155-167.
- [2] D. E. Blair, G. D. Ludden & K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973) 175-184.
- [3] ----, Semi-invariant immersions, to appear in Kōdai Math. Sem. Rep.
- [4] E. Calabi & B. Eckmann, A class of compact complex manifolds which are not algebraic, Ann. of Math. 58 (1953) 494-500.
- [5] S. S. Chern, Complex manifolds without potential theory, Math. Studies No. 15, Van Nostrand, Princeton, 1967.
- [6] A. Morimoto, On normal almost contact structures, J. Math. Soc. Japan 15 (1963) 420-436.
- [7] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hermitian or almost Kaehlerian, Kōdai Math. Sem. Rep. 18 (1966) 161-183.
- [8] S. Sasaki & Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan 14 (1962) 249-271.
- [9] K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying $f^a + f = 0$, Tensor 15 (1963) 99-109.

MICHIGAN STATE UNIVERSITY